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Abstract

In this paper, a bimorph impedance transducer (BIT), which is utilized as a simultaneous actuator and sensor for

mechanical impedance measurement, is modeled and analytically characterized. A four-pole model is constructed to

correlate the desired translational mechanical impedance with the measured electrical impedance. From the four-pole

model, two set functions are defined to describe the system dynamics of the transducer. Closed-form expressions for these

functions are then derived based on piezoelectric constitutive equations and beam theory. Besides producing accurate

predications, as verified by a series of experiments, the analytical studies provide strong physical insight into the interaction

between the transducer and the external load applied to it. Through two examples, it is found that the analytical solutions

are also useful in improving the actuation efficiency and sensing capability of a BIT.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As bending bimorphs possess high motion and voltage sensitivity, they are widely used as electromechanical
transducers, such as accelerometers [1], resonators [2], laser beam deflectors [3], air acoustic transducers [4],
microscopes [5], and pumps [6]. Due to the extensive applications, a lot of researchers have tried to analytically
model bending bimorphs. The two most widely used approaches are admittance matrix approach and
equivalent circuit approach.

Admittance matrix approach is extensively adopted in modeling bimorph transducers as it describes the
electromechanical coupling in a bimorph. In 1991, Smits et al. developed the linear constituent relations of a
cantilever bimorph for static case [7]. Their paper was a milestone in characterizing the electromechanical
properties of bending bimorph. In their work, the bimorph was put in a constant electrical field. One end of
the bimorph was fixed without displacement, the other end was free and subjected to different kind of load
(moment, force, or uniformly distributed pressure). Using the internal energy method by assuming
thermodynamic quasi-equilibrium, the cantilever bimorph under various constant mechanical/electrical loads
was characterized by a 4� 4 matrix equation.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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In order to get a better understanding of the bimorph behavior as a function of frequency, Smits et al.
developed a dynamic admittance matrix for cantilever bimorph which related the harmonically varying diving
parameters to their response parameters [8,9]. Through evaluating the dynamic performance of the bimorph
under external excitations, the elements in the dynamic admittance matrix were identified analytically.

As piezoelectric bimorphs are widely used in industrial equipment, it is useful to cast the bimorph
constituent equations in network representation [10]. In this way, bimorph sensors or actuators can be fully
and rapidly incorporated into the world of electronics. Cho et al. proposed an important equivalent circuit
model in 2000 [11]. In their studies, a 5� 5 impedance matrix was determined to describe the dynamic
behavior of a bimorph beam. The extensive parameters considered are forces and moments at both ends of the
bimorph and electrical voltage across the bimorph. Cho’s model is feasible for bimorphs with various end
conditions. However, like other equivalent circuit models, Cho’s model is complex. For different end
conditions or external mechanical loads, complicated circuits have to be developed and then simplified to get
the results.

In the past decades, though a lot of researchers have investigated the performance of piezoelectric bimorph
as a sensor or an actuator, little research work was done in using bimorph as a sensor and an actuator
simultaneously. In this paper, based on a Sensor cum Actuator (SCA) technique [12,13], a Bimorph
Impedance Transducer (BIT), in which two bimorphs serve as the essential actuating and sensing elements for
translational mechanical impedance measurement, will be studied. After modeling the BIT using a four-pole
model, the transducer is calibrated analytically. Closed-form calibration functions and transduction functions,
which describe the system dynamics of the transducer, will be derived in conjunction with piezoelectric
constitutive equations and beam theory. Besides providing strong physical insight into the interaction between
the transducer and the external load applied to it, the analytical solutions produce accurate predictions of the
amplitude of the functions, as will be verified by experiments. Using the closed-form formulae, the actuation
efficiency and sensing capability of a BIT will be further investigated through changing the material and
geometric parameters of the BIT.
2. Working principles of the BIT for translational impedance measurement

The BIT contains two series type bimorphs, an insulating layer and a rigid supporting block, as shown in
Fig. 1. The two bimorphs have identical geometric and material characteristics and are symmetrically attached
to the glass epoxide layer, which effectively prevents the charge convection between the left and right
bimorphs. The bottom of the insulating layer is tightly glued to the supporting block, which is made of
aluminum and has a dimension of 15mm� 15mm� 15.8mm. As illustrated in Fig. 1, x-axis is along the
bimorph length direction, y-axis along the bimorph width direction and z-axis along the thickness direction.

When ac voltages of same amplitude and phase are supplied to the left and right bimorphs, the bimorphs are
set into bending vibrations synchronously (Fig. 2). Dynamic forces and moments are generated at the
connecting parts between the bimorphs and the insulating layer due to the inverse piezoelectric effect. As the
transducer is symmetric (though during fabrication, slight difference exists), the moments have the same
amplitude but opposite direction, therefore they cancel out each other; while, the dynamic forces are identical
in both amplitude and direction, thus they are doubled in magnitude and exerted to the test structure through
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Fig. 1. Structure of the bimorph impedance transducer.
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Fig. 2. Working principles of the BIT for translational impedance measurement.
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Fig. 3. Translational four-pole model of the bimorph impedance transducer.
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the supporting block. At the same time of actuation, the response of the structure affects the motion of the
transducer due to the direct piezoelectric effect. To describe the simultaneous actuation/sensing process, a
translational two-port model is constructed as shown in Fig. 3. A matrix equation correlates the voltage and
current at the electrical port with the force and velocity at the mechanical port of the BIT:

V t

it

" #
¼

a11 a12

a21 a22

" #
�

F z

vz

" #
(1)

where Vt is the electrical voltage applied to the left and right bimorphs, it is the sum of the electrical current on
the bimorphs, and Fz and vz are the output force and velocity along z-direction.

The 2� 2 matrix in Eq. (1) describes the dynamic characteristics of the BIT for translational measurement.
The four elements in the matrix are called transduction functions. They are normally frequency spectra
describing the relationships between one input electrical variable and one output mechanical variable.

a11 ¼ Vt=F zjvz¼0 (2)

a21 ¼ it=Fzjvz¼0 (3)

a12 ¼ V t=vzjFz¼0 (4)

a22 ¼ it=vzjFz¼0 (5)

The translational mechanical impedance of the host structure at the excitation point can be expressed as

Zt
z ¼

F z

vz

(6)

The input electrical impedance of the transducer is

Zt
e ¼

Vt

it (7)

Combining Eqs. (1)–(7), we have

Zt
z ¼ �

a22Zt
e � a12

a21Zt
e � a11

(8)
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As shown in Eq. (8), after calibration functions a11, a21, a12, and a22 are made available, translational
mechanical impedance at the measurement point can be evaluated from the input electrical impedance.
However, in experiments, these functions are difficult to measure using conventional transducers. The loading
effects of conventional load cells and accelerometers for force and acceleration measurement are too big to
ignore due to the small size and low weight of the BIT. To avoid these difficulties, an alternative calibration
method was developed to characterize the BIT.

In Eq. (1), if letting it, Fz, and nz equal to zero, respectively, we have another set of calibration functions:

Zt
MO ¼

Fz

vz

����
it¼0

(9)

Zt
ef ¼

V t

it

����
Fz¼0

(10)

Zt
ec ¼

V t

it

����
vz¼0

(11)

where Zt
MO is the translational impedance of the BIT when it is electrically open-circuited, Zt

ef and Zt
ec are the

electrical impedances of the transducer when it is freely suspended and clamped onto the ground, respectively.
Combining Eqs. (1)–(11), the translational impedance at the excitation point is

Zt
z ¼ Zt

MO

Zt
e � Zt

ef

Zt
e � Zt

ec

(12)

As discussed above, two sets of functions could be utilized to describe the system dynamics of the BIT:
transduction functions (a11, a12, a21, a22) and calibration functions ðZt

MO;Z
t
ef ;Z

t
ecÞ. To gain further insight into

the newly designed BIT, the relationship between these functions and the material and geometric properties of
the BIT are described in the following paragraphs.
3. Analytical calibration

The left and right piezoelectric bimorphs in the prototype BIT come from Fuji Ceramics C-6 series and have
dimensions of 63mm� 15mm� 1mm. Table 1 lists their material properties and dimensions. In the following
analysis, as the BIT is designed to be symmetric about x-axis, only one half of the transducer with symmetric
boundary condition will be studied.
3.1. Motion equation of a bimorph in the BIT

According to piezoelectric constitutive equations, the electromechanical coupling of the bimorph in Fig. 1
can be expressed as

For upper PZT : S
p
1 ¼ sE

11T
p
1 � d31E3 (13)

D3 ¼ �d31T
p
1 þ �

T
33E3 (14)

For lower PZT : S
p
1 ¼ sE

11T
p
1 þ d31E3 (15)

D3 ¼ d31T
p
1 þ �

T
33E3 (16)

where S
p
1 and T

p
1 are the strain and stress of the PZT layers parallel with x-axis, E3 and D3 are the electric field

and dielectric displacement along z-direction, sE
11 is the mechanical compliance under constant electric field

condition, d31 is the piezoelectric constant, and �T
33 is the permittivity under constant stress condition.
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Table 1

Material and geometric properties of the bimorphs in the prototype BIT.

Unit Nomenclature

Piezoelectric elements

Density kg/m3 r 7400

Poisson’s ratio sE 0.31

Elastic modulus (e formal) � 1010N/m2
CE

11
12.3

CE
12

7.7

CE
13

8.0

CE
33

11.2

CE
44

1.9

CE
66

2.3

Piezoelectric constants C/m2 e31 �7.3

e33 17.2

e15 14.5

Relative dielectric constants �S11=�0 1039

�S33=�0 749

Coupling factors � 10�2 K31 40.9

Mechanical Q Qm 82

Length m ltotal 0.063

Cantilevered length m l 0.05655

Width m b 0.015

Thickness m 2hp 0.0009

Middle metal layer

Elastic constant m2/N sm
11 8.9286� 10�12

Density kg/m3 r 8800

Thickness m 2hm 0.0001
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For the middle metal layer, from Hook’s law, we have

Sm
1 ¼ sm

11Tm
1 (17)

where Tm
1 and Sm

1 are the stress and strain of the metal layer and sm
11 the mechanical compliance of the metal.

Assuming the bimorph undergoes small deflections in the linearly elastic region, it is viewed as a
Euler–Bernoulli beam. A small bimorph element is depicted in Fig. 4. w is the out-of-plane displacement of the
bimorph’s neutral plane from its unloaded position to its loaded position. This displacement is usually
accompanied by the rotation of the neutral plane:

a ¼ �
dw

dx
(18)

The strains in the PZT element and the metal layer are

S
p
1 ¼

dup

dx
¼

da
dx

zp and Sm
1 ¼

dum

dx
¼

da
dx

zm (19)

where zp and zm are the z-coordinate of a thin PZT layer and a metal layer, respectively, and up and um are the
corresponding transverse displacement.

For the bimorph element in Fig. 4, direct stresses T
p
1 and Tm

1 create moments about the neutral plane.
Summing these moments over the cross-section area results in a total bending moment:

My ¼

Z Z
zpT

p
1 dy dzþ

Z Z
zmTm

1 dydz (20)



ARTICLE IN PRESS

wT2

−�

dx

u

z Deformed State

Undeformed State

M
dx

∂x
∂M

dx
∂x

∂T3T3 +

T1
m

T1
p

T1
p

T1

T1

T1
p

T1
p

T1
m

�

M +

Fig. 4. Diagram of a small bimorph element.
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When summing the shear stresses T
p
3 and Tm

3 , the total shear force becomes

F3 ¼ F
p
3 þ Fm

3 ¼

Z Z
T

p
3 dydzþ

Z Z
Tm

3 dydz (21)

Consider the moment equilibrium of the bimorph element, we have

My þ
qMy

qx
dx�My � F3 dx ¼ 0! F3 ¼

dMy

dx
(22)

Taking advantages of Eqs. (13)–(17),

My ¼ �
2b

3

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
1

sm
11

h3
m

� �
d2w

dx2
�

d31b

2sE
11

ðhp þ 2hmÞV (23)

F3 ¼
dM

dx
¼ �

2b

3

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �
d3w

dx3
(24)

where b and hp are the width and thickness of one PZT layer, 2hm is the thickness of the middle metal layer,
and V is the excitation voltage.

Applying Newton’s second law to the bimorph element in z-direction yields:

X
F z ¼ maz ¼ ð2rmhmbdxþ 2rphpbdxÞ

q2w
qt2
¼ F3 þ

qF 3

qx
dx� F3

2bðrmhm þ rphpÞ
q2w

qt2
¼

qF 3

qx
¼

q2My

qx2
(25)

Substituting Eq. (23) into Eq. (25), the motion equation which governs the transverse motion of the bimorph is
obtained as

�
2b

3

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �
q4w
qx4
þ 2bðrmhm þ rphpÞ

q2w

qt2
¼ 0 (26)

where rp and rm are the densities of the PZT and the metal layers.
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3.2. Identification of transduction functions and calibration functions

As shown in Eq. (26), the out-of-plane displacement w is a function of both the x coordinate and time.
Through separating variables, the general solution for the harmonic vibration in Eq. (26) is obtained as

w ¼ ½k1 cosðOxÞ þ k2 sinðOxÞ þ k3 coshðOxÞ þ k4 sinhðOxÞ� ejot (27)

where

O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðrphp þ rmhmÞo2

2b

3

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �4

vuuuut
Since the BIT is driven by sinusoidal voltage, the assumption of the harmonic time dependence ejot is justified.

From Eq. (27), we have the expressions for rotation, bending moment, and shear force, which are functions
of the four coefficients k1, k2, k3, k4:

a ¼ �O½�k1 sinðOxÞ þ k2 cosðOxÞ þ k3 sinhðOxÞ þ k4 coshðOxÞ� (28)

My ¼ �
2O2b

3

ðhp þ hmÞ
3
� h3

m

sE
11

þ
h3

m

sm
11

" #
½�k1 cosðOxÞ � k2 sinðOxÞ þ k3 coshðOxÞ þ k4 sinhðOxÞ�

�
d31b

2sE
11

ðhp þ 2hmÞV (29)

F3 ¼ �
2O3b

3

ðhp þ hmÞ
3
� h3

m

sE
11

þ
h3

m

sm
11

" #
½k1 sinðOxÞ � k2 cosðOxÞ þ k3 sinhðOxÞ þ k4 coshðOxÞ� (30)

In the frequency domain, the electrical current on the bimorph is

I ¼ bd31

Z l

0

dT
p
1

dt
dxþ

jobl

2hp

�T
33 �

d2
31

sE
11

� �
V (31)

Now with these expressions, calibration functions ðZt
ec;Z

t
ef ;Z

t
MOÞ and transduction functions (a11, a21, a12, a22)

can be determined under different boundary conditions. First, for Zt
ec, a11, and a21, mechanically clamped

condition is considered. Under clamped condition, as the stiffness of the supporting block in the z-direction is
much higher than that of the bimorph, the supporting block is treated as a rigid body. The displacement
constraints at the bottom of the block are therefore tantamount to the constraints at the connecting part
between the block and the bimorph. The other end of the bimorph is totally free. Above boundary conditions
lead to the following equations:

F 3A ¼ 0 MyA ¼ 0

wB ¼ 0 aB ¼ 0

Solving above equations, we have the closed-form formulae for Zt
ec, a11, and a21:

Zec ¼
1

jo
3d2

31bðhp þ hmÞ
2

8OsE2

11

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �sinhðOlÞ cosðOlÞ þ sinðOlÞ coshðOlÞ

1þ cosðOlÞ coshðOlÞ
þ

bl

2hp

�T
33 �

d2
31

sE
11

� �2
6664

3
7775

(32)

a11 ¼
2sE

11

d31bOðhp þ 2hmÞ

1þ cosðOlÞ coshðOlÞ

sinðOlÞ � sinhðOlÞ
(33)
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a21 ¼
2sE

11

jod31bOðhp þ 2hmÞ

1þ cosðOlÞ coshðOlÞ

sinðOlÞ � sinhðOlÞ

�
3d2

31bðhp þ hmÞ
2
½sinhðOlÞ cosðOlÞ þ sinðOlÞ coshðOlÞ�

8OsE
11

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �
½1þ cosðOlÞ coshðOlÞ�

þ
bl

2hp

�T
33 �

d2
31

sE
11

� �2
6664

3
7775 (34)

Mechanically free condition is then applied to the BIT to identify Zt
ef , a12, and a22. According to the

definitions in Eqs. (4), (5), and (10), identical voltages supplied to the bimorphs of the BIT result in
the translational vibrations of the output port of the transducer (the bottom of the supporting block) along the
z-direction while rotation is inhibited. In this situation, the supporting block is treated as a concentrated mass.
As a result, an inertial force caused by the vibrations of the block is loaded to the right end of the bimorph.
The left end of the bimorph is free. These boundary conditions lead to:

F 3A ¼ 0 MyA ¼ 0

F3B ¼ �mo2wB aB ¼ 0

Combining above equations with Eqs. (27)–(31), we have the closed-form expressions for Zt
ef , a12, and a22:

Zef ¼
1

jo
3d2

31bðhp þ hmÞ
2

8OsE2

11

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �Aþ
bl

2hp

�T
33 �

d2
31

sE
11

� �2
6664

3
7775

(35)

a12 ¼

4O2sE
11

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �
3jogd31ðhp þ 2hmÞ

C (36)

a22 ¼

4CO2sE
11

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �
3gd31ðhp þ 2hmÞ

�
3Ad2

31bðhp þ hmÞ
2

8OsE2

11

1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �þ bl

2hp

�T
33 �

d2
31

sE
11

� �2
6664

3
7775 (37)

where

g ¼
2bO3 1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �
3mo2

A ¼
cosðOlÞ sinhðOlÞ þ sinðOlÞ coshðOlÞ þ 2g sinðOlÞ sinhðOlÞ

1þ cosðOlÞ coshðOlÞ þ g sinðOlÞ coshðOlÞ þ g cosðOlÞ sinhðOlÞ

C ¼
1þ cosðOlÞ coshðOlÞ þ g sinðOlÞ coshðOlÞ þ g cosðOlÞ sinhðOlÞ

sinhðOlÞ � sinðOlÞ

2m ¼ mass of the supporting block.
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From Eq. (12), besides Zt
ec and Zt

ef , Zt
MO is another indispensable calibration function defining the system

dynamics of the BIT. Its analytical formula is derived from transduction functions a21 and a22 by

Zt
MO ¼

Fz

vz

����
it¼0

¼ �
a22

a21

¼ �

2CO3job
1

sE
11

½ðhp þ hmÞ
3
� h3

m� þ
h3

m

sm
11

� �
3Ad2

31bðhp þ hmÞ
2

8OsE2

11

1

sE
11

½ðhp þ hmÞ
3
� h3m� þ

h3
m

sm
11

� �þ bl

2hp

�T33 �
d2
31

sE
11

� �2
6664

3
7775

3g½1þ cosðOlÞ coshðOlÞ�

sinðOlÞ � sinhðOlÞ

3d2
31bðhp þ hmÞ

2
½sinhðOlÞ cosðOlÞ þ sinðOlÞ coshðOlÞ�

8OsE
11

1

sE
11

½ðhp þ hmÞ
3
� h3m� þ

h3
m

sm
11

� �
½1þ cosðOlÞ coshðOlÞ�

þ
bl

2hp

�T33 �
d2
31

sE
11

� �2
6664

3
7775
(38)

Based on the above discussions, it is concluded that calibration functions ðZt
ec;Z

t
ef ;Z

t
MOÞ and transduction

functions (a11, a21, a12, a22) are frequency spectra solely depending on the actuating frequency and the material
and geometric characteristics of the transducer itself. For the prototype transducer with properties listed in
Table 1, these functions are calculated using the formulae in Eqs. (32)–(38), as depicted in Figs. 5 and 6. As
BIT is a light-damped structure, here when analytically calibrating it, damping is not taken into account as in
above analysis, here only amplitude information is obtained.

4. Experimental verifications

In this section, experiments were carried out to validate the formulae derived in the last section. As
transduction functions (a11, a21, a12, a22) are difficult to measure as discussed in Section 2, only calibration
functions ðZt

ec;Z
t
ef ;Z

t
MOÞ were experimentally evaluated.
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To identify Zt
ec and Zt

ef , mechanically clamed and free conditions were achieved, respectively. The clamped
boundary condition was realized by clamping BIT (0.024 kg) onto an 18 kg base (Fig. 7(a)). The free condition
was performed by suspending the transducer with an elastic string, as shown in Fig. 7(b). Since the natural
frequency of the suspended system is far below the frequency range of interest, the effect of the string on
measurement can be ignored.

Under both clamped and free conditions, identical voltage excitations in the form of a sine sweep were
generated by an SI 1260 Impedance/Gain-Phase Analyzer and supplied to the left and right bimorphs of the
BIT. The input electrical impedance was simultaneously measured by the analyzer. The measured Zt

ec and Zt
ef

versus frequency are compared with the analytical solutions in Fig. 6.
For another calibration function Zt

MO, due to the fact that BIT is small and light, it is almost impossible to
directly measure Zt

MO using conventional sensors. In experiments, instead of directly measuring force and
velocity, an alternative identification method was adopted, in which a series of rigid cuboids with known
masses were loaded to the BIT one by one, serving as a known mechanical load (Fig. 7(c)). As the cuboid can
be treated as an ideal rigid body with mass m, its translational mechanical impedance at any frequency is
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Fig. 7. Experimental setup to identify calibration functions Zt
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MO: (a) measurement of Zt
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ef , and

(c) measurement of Zt
MO.
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known as

Zt
z ¼

Fz

vz

¼
maz

vz

¼
m

vz

ovz ¼ mo ¼ 2pf jm (39)

For each cuboid, taking advantages of Zt
ec and Zt

ef , which have been experimentally determined above, Zt
MO

can be determined from the measured Zt
e:

Zt
MO ¼

Fz

vz

¼ 2mpf j
Ze � Zec

Ze � Zef

(40)

To minimize measurement errors, eight calibration masses were employed to experimentally determine Zt
MO:

3.65, 4.85, 5.60, 6.09, 7.04, 9.09, 10.92, and 16.64 g. For each mass, testing illustrated in Fig. 7(c) was carried
out. A calibration mass was glued to the supporting block of the transducer; the transducer and calibration
mass system was freely suspended with elastic string. After ac voltage of same amplitude and phase was
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supplied to the left and right bimorphs, the electrical impedance Zt
e was measured using the SI Impedance

Analyzer. Then averaging process was performed to get the final results (Fig. 6).
When comparing the experimental and analytical data for Zt

ec and Zt
ef in Fig. 6(a) and (c), it can be seen that

the amplitude curves from experiments and analytical calculations agree very well over the whole frequency
range up to 1200Hz. However, since damping is not included in the analytical solutions, as expected, the
amplitudes from analytical formulae are larger than those from experiments at resonances and anti-
resonances. For Zt

MO in Fig. 6(e), it is observed that Zt
MO determined via the two calibration ways (analytical

and experimental) are comparable. The discrepancy is greater at the low frequency range. This may be
accounted for by the fact that in the low frequency range, the amplitude of Zt

e is quite big as the current is
small and is similar with those of Zt

ec and Zt
ef , therefore errors are more liable to occur according to Eq. (40).

The difference among the experimental and analytical results is also due to the fact that the analytical studies
were based on ideal conditions; while, in experiments, the fabrication of the BIT and the rigid masses was not
absolutely ideal. Even so, the confirmation of the theoretical prediction by the experimental results is good.

5. Improvement of the SCA performance of a BIT

A conventional sensor is desired to be as small as possible to achieve high measurement accuracy. In
contrast, a conventional actuator should be as large as possible to minimize its effect on measurement. While,
for the BIT, which serves as a sensor and an actuator simultaneously, until now, there has not been a well-
accepted criterion defining its optimal SCA performance. However, it is safe to say that a ‘‘good’’ BIT should
have high actuation efficiency to effectively excite the tested structure and high sensing capability to detect
even small variations in the measurand.

Since a BIT performs actuating during measurement, it is necessary to discuss its actuation efficiency.
According to the definitions in Eqs. (2) and (4), a11 describes the relationship between the excitation voltage
and the output force under clamped condition; a12 defines the relationship between the voltage and the linear
velocity under free condition. As a BIT is driven by voltage, an examination of a11 and a12 provides us
information on the actuation efficiency of a BIT. To improve actuating efficiency, amplitudes of a11 and a12
are preferred to be as small as possible at a given excitation frequency so that BIT produces higher output
force or velocity for any given excitation voltages.

As BIT also performs sensing, it is desired that the measurand, namely, the input electrical impedance Zt
e, is

accurately detected. Zt
ec and Zt

ef are the electrical impedances of BIT corresponding to two extreme boundary
conditions: clamped and free conditions. Any test structure, which serves as a mechanical load to the
transducer, falls between these two conditions. Therefore, an examination of Zt

ec and Zt
ef will give us some

information on the sensing ability of a BIT.
In Section 3, the closed-form calibration functions ðZt

ec;Z
t
ef ;Z

t
MOÞ and transduction functions (a11, a12, a21,

a22) have been analytically derived. Taking advantages of these formulae, it is possible to improve the SCA
performance of a BIT through studying the influence of its essential design parameters on its dynamic
performance. In this paper, two cases are considered as examples. In the first case, the electrical connection
type of the bimorphs in a BIT is changed from the series type as in the prototype transducer to the parallel
type. This change introduces additional factors in Eqs. (13)–(16): the piezoelectric coefficient d31 is multiplied
by two and the dielectric term �T

33 is multiplied by four [14]. In the second case, the material properties are kept
unchanged, while the thickness of the bimorphs changed from 0.35mm, 0.45mm, to 0.55mm. In both cases,
transduction functions a11 and a12 as well as calibration functions Zt

ec and Zt
ef are calculated using Eqs. (33),

(36), (32), and (35). The amplitudes of these functions versus frequency are depicted in Figs. 8 and 9,
respectively.

As shown in Fig. 8, the changes in the piezoelectric coefficient and the dielectric term do not alter the natural
frequencies of the four functions studied. However, it has significant influence in the amplitudes of all the
functions. At any frequency, for a given excitation voltage, the output force or velocity is doubled for the
clamped or free boundary condition, and the electrical impedances Zt

ec and Zt
ef become only one-fourth of

the original values. It is therefore concluded that through adopting parallel bimorphs, namely, through
increasing the piezoelectric and dielectric coefficients, better actuation efficiency as well as better sensing
capability is achieved.
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From Fig. 9, it is observed that thicker bimorphs correspond to larger natural frequencies of all the
functions. This conforms to the fact that the increase in bimorph thickness results in the increase in both
stiffness and mass of the transducer, while the increase in stiffness has a larger effect on natural frequencies
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than the increase in mass. For calibration functions Zt
ec and Zt

ef , PZT thickness not only affects their natural
frequencies, but influences their amplitudes. Generally speaking, the thinner PZT layers result in smaller
amplitudes of the electrical impedances and therefore improve the sensing capability of a BIT.

6. Conclusions

In this paper, a Bimorph Impedance Transducer is modeled and analytically characterized. The closed-form
calibration functions ðZt

ec;Z
t
ef ;Z

t
MOÞ and transduction functions (a11, a12, a21, a22) are derived based on the

piezoelectric constitutive equations and beam theory. With these closed-form formulae, the dynamic
performance of a BIT under various boundary conditions is directly related to the physical parameters of the
transducer itself. After the effectiveness of these formulae is verified by experiments, these formulae are
utilized to improve the actuation and sensing performance of a BIT. Through two examples, in which different
bimorph types (series versus parallel bimorph) and dimensions are employed for a BIT, it is found that it is
feasible to design BITs with better actuation efficiency and sensing capability.

The analytical approach is of great importance for design and optimization of a Bimorph Impedance
Transducer. For instance, miniaturization is one major trend in product design in recent years. To measure
mechanical impedance of mini-structures, a suitable BIT has to be very small in size. Calibration of such a
miniature transducer will pose difficulties in experiments, making the design and optimization a difficult job.
However, with the analytical solutions, such work can be easily performed, saving considerable money and
time. The BIT has been successfully employed to measure translational and rotational FRFs of elastic
structures including one-dimensional beam and two-dimensional plate [15,16].
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